139 research outputs found

    Characterisation of the transmissivity field of a fractured and karstic aquifer, Southern France

    Get PDF
    International audienceGeological and hydrological data collected at the Terrieu experimental site north of Montpellier, in a confined carbonate aquifer indicates that both fracture clusters and a major bedding plane form the main flow paths of this highly heterogeneous karst aquifer. However, characterising the geometry and spatial location of the main flow channels and estimating their flow properties remain difficult. These challenges can be addressed by solving an inverse problem using the available hydraulic head data recorded during a set of interference pumping tests.We first constructed a 2D equivalent porous medium model to represent the test site domain and then employed regular zoning parameterisation, on which the inverse modelling was performed. Because we aim to resolve the fine-scale characteristics of the transmissivity field, the problem undertaken is essentially a large-scale inverse model, i.e. the dimension of the unknown parameters is high. In order to deal with the high computational demands in such a large-scale inverse problem, a gradient-based, non-linear algorithm (SNOPT) was used to estimate the transmissivity field on the experimental site scale through the inversion of steady-state, hydraulic head measurements recorded at 22 boreholes during 8 sequential cross-hole pumping tests. We used the data from outcrops, borehole fracture measurements and interpretations of inter-well connectivities from interference test responses as initial models to trigger the inversion. Constraints for hydraulic conductivities, based on analytical interpretations of pumping tests, were also added to the inversion models. In addition, the efficiency of the adopted inverse algorithm enables us to increase dramatically the number of unknown parameters to investigate the influence of elementary discretisation on the reconstruction of the transmissivity fields in both synthetic and field studies.By following the above approach, transmissivity fields that produce similar hydrodynamic behaviours to the real head measurements were obtained. The inverted transmissivity fields show complex, spatial heterogeneities with highly conductive channels embedded in a low transmissivity matrix region. The spatial trend of the main flow channels is in a good agreement with that of the main fracture sets mapped on outcrops in the vicinity of the Terrieu site suggesting that the hydraulic anisotropy is consistent with the structural anisotropy. These results from the inverse modelling enable the main flow paths to be located and their hydrodynamic properties to be estimated

    Forward Modeling and validation of a new formulation to compute self-potential signals associated with ground water flow

    Get PDF
    The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of establishing a constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation has been extended in the inertial laminar flow regime and to unsaturated conditions with applications to the vadose zone. This formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between finite element simulations performed and field observations. Thus, this formulation could be useful for the inverse mapping of the geometry of groundwater flow from self-potential field measurements

    Tomography of the Darcy velocity from self-potential measurements

    Get PDF
    An algorithm is developed to interpret self-potential (SP) data in terms of distribution of Darcy velocity of the ground water. The model is based on the proportionality existing between the streaming current density and the Darcy velocity. Because the inverse problem of current density determination from SP data is underdetermined, we use Tikhonov regularization with a smoothness constraint based on the differential Laplacian operator and a prior model. The regularization parameter is determined by the L-shape method. The distribution of the Darcy velocity depends on the localization and number of non-polarizing electrodes and information relative to the distribution of the electrical resistivity of the ground. A priori hydraulic information can be introduced in the inverse problem. This approach is tested on two synthetic cases and on real SP data resulting from infiltration of water from a ditch

    Factors influencing the electronic government adoption among PSM in Oman: A structural equation modeling approach

    Get PDF
    The dynamic movement of electronic government (e-government) needs a clear pathway on the adoption level of stakeholders within the public sector organization. This research has identified gaps in the movement of the adoption. The respondents comprised 237 public sector managers at the ministry level who conduct e-government services in the Sultanate of Oman. A questionnaire was designed to tap into the manager's perception of the Internet's Perceived Usefulness, Perceived Credibility of technology, Intention to use the technology, and adoption of the Internet itself. Seven hypothesized relationships were tested in the structural model. An advanced quantitative data analysis using multivariate data analysis was employed. The data were analyzed using structural equation modeling (SEM) to test the causal and mediating effects of latent variables. Based on the research, the hypothesized model fit fails to be supported (p<.05). The findings support the TAM theory extremely well, whereby, all the hypothesized paths were asserted. The generated model found three significant direct paths between Perceived Usefulness, Perceived Credibility, and intention as well as between intention and adoption

    Dynamics of Mycobacterium tuberculosis Lineages in Oman, 2009 to 2018

    Get PDF
    Study aim. Effective Tuberculosis (TB) control measures in Oman have reduced the annual incidence of tuberculosis cases by 92% between 1981 and 2016. However, the current incidence remains above the program control target of <1 TB case per 100,000 population. This has been partly attributed to a high influx of migrants from countries with high TB burdens. The present study aimed to elucidate Mycobacterium tuberculosis infection dynamics among nationals and foreigners over a period of 10 years. Methods. The study examined TB cases reported between 2009 and 2018 and examined the spatial heterogeneity of TB cases and the distribution of M. tuberculosis genotypes defined by spoligotypes and MIRU-VNTR among Omanis and foreigners. Results. A total of 484 spoligoprofiles were detected among the examined isolates (n = 1295). These include 943 (72.8%) clustered and 352 (27.2%) unique isolates. Diverse M. tuberculosis lineages exist in all provinces in Oman, with most lineages shared between Omanis and foreigners. The most frequent spoligotypes were found to belong to EAI (318, 30.9%), CAS (310, 30.1%), T (154, 14.9%), and Beijing (88, 8.5%) lineages. However, the frequencies of these lineages differed between Omanis and foreigners. Of the clustered strains, 192 MTB isolates were further analysed via MIRU-VNTR. Each isolate exhibited a unique MIRU-VNTR profile, indicative of absence of ongoing transmission. Conclusions. TB incidence exhibits spatial heterogeneity across Oman, with high levels of diversity of M. tuberculosis lineages among Omanis and foreigners and sub-lineages shared between the two groups. However, MIRU-VNTR analysis ruled out ongoing transmission

    Drug resistant Mycobacterium tuberculosis in Oman: resistance-conferring mutations and lineage diversity

    Get PDF
    Background The Sultanate of Oman is country a low TB-incidence, with less than seven cases per 105 population detected in 2020. Recent years have witnessed a persistence in TB cases, with sustained incidence rate among expatriates and limited reduction among Omanis. This pattern suggests transmission from the migrant population. The present study examined the genetic profile and drug resistance-conferring mutations in Mycobacterium tuberculosis collected from Omanis and expatriates to recognise possible causes of disease transmission. Methods We examined M. tuberculosis cultured positive samples, collected from Omanis (n = 1,344) and expatriates (n = 1,203) between 2009 and 2018. These isolates had a known in vitro susceptibility profile to first line anti-TB, Streptomycin (SM), Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) and Pyrazinamide (PZA). The diversity of the isolates was assessed by spacer oligo-typing (spoligotyping). Drug resistance-conferring mutations resulted from full-length sequence of nine genes (katG, inhA, ahpc, rpoB, rpsL, rrs, embB, embC, pncA) and their phenotypic relationship were analysed. Results In total, 341/2192 (13.4%), M. tuberculosis strains showed resistance to any drug, comprising mono-resistance (MR) (242, 71%), poly-resistance (PR) (40, 11.7%) and multi-drug resistance (MDR) (59, 17.3%). The overall rate of resistance among Omanis and expatriates was similar; however, MDR and PZAR were significantly higher among Omanis, while INHR was greater among expatriates. Mutations rpsL K43R and rpoB S450L were linked to Streptomycin (SMR) and Rifampicin resistance (RIFR) respectively. Whereas, katG S315T and inhA –C15T/G–17T were associated with Isoniazid resistance (INHR). The resistance patterns (mono-resistant, poly-resistant and MDR) and drug resistance-conferring mutations were found in different spoligo-lineages. rpsL K43R, katG S315T and rpoB S450L mutations were significantly higher in Beijing strains. Conclusions Diverse drug resistant M. tuberculosis strains exist in Oman, with drug resistance-conferring mutations widespread in multiple spoligo-lineages, indicative of a large resistance reservoir. Beijing’s M. tuberculosis lineage was associated with MDR, and multiple drug resistance-conferring mutations, favouring the hypothesis of migration as a possible source of resistant lineages in Oman

    Seismoelectric couplings in a poroelastic material containing two immiscible fluid phases

    No full text
    International audienceA new approach of seismoelectric imaging has been recently proposed to detect saturation fronts in which seismic waves are focused in the subsurface to scan its heterogeneous nature and determine saturation fronts. Such type of imaging requires however a complete modelling of the seismoelectric properties of porous media saturated by two immiscible fluid phases, one being usually electrically insulating (for instance water and oil). We combine an extension of Biot dynamic theory, valid for porous media containing two immiscible Newtonian fluids, with an extension of the electrokinetic theory based on the notion of effective volumetric charge densities dragged by the flow of each fluid phase. These effective charge densities can be related directly to the permeability and saturation of each fluid phase. The coupled partial differential equations are solved with the finite element method. We also derive analytically the transfer function connecting the macroscopic electrical field to the acceleration of the fast P wave (coseismic electrical field) and we study the influence of the water content on this coupling. We observe that the amplitude of the co-seismic electrical disturbance is very sensitive to the water content with an increase in amplitude with water saturation. We also investigate the seismoelectric conversions (interface effect) occurring at the water table. We show that the conversion response at the water table can be identifiable only when the saturation contrasts between the vadose and saturated zones are sharp enough. A relatively dry vadose zone represents the best condition to identify the water table through seismoelectric measurements. Indeed, in this case, the coseismic electrical disturbances are vanishingly small compared to the seismoelectric interface response

    The self-potential method: Did the Ugly Duckling of Environmental Geophysics Turn into a Beautiful Swan

    No full text
    International audienc
    • …
    corecore